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ABSTRACT 

A comparison of analysis and resynthesis methods for use with a 
system for dividing time-coincident stereo audio signals into di-
rectional segments is presented. The purpose of such a system is 
to give greater flexibility in the presentation of spatial informa-
tion when two-channel audio is reproduced. Example applica-
tions include up-mixing and transforming panning from ampli-
tude to time-delay based. Included in the methods are the dual-
tree complex wavelet transform and wavelet packet decomposi-
tion with best basis search. The directional segmentation system 
and the analysis and resynthesis methods are briefly described, 
with reference to the relevant underlying theory, figures of merit 
are presented for each method applied to three stereo mixtures of 
contrasting material and the subjective quality of the output (with 
links to all audio examples) is discussed. 

1. INTRODUCTION 

Audio recordings represent the capture of an acoustic event, or 
the rendering of an electronic/digital process, at a particular point 
in time. If there is more than one discrete channel then spatial 
information can be included in the recorded information. For 
two-channel stereo recordings, despite the sparsity of the spatial 
sampling points, a rich spatial experience can be provided for the 
headphone listener (particularly if the information is binaurally 
captured), or for (a) person(s) within a small listening area be-
tween two loudspeakers in a good listening environment. That 
said, there are now increased opportunities for surround sound 
(i.e. more than two-channel) storage, transmission and playback. 
Also, for individual listeners, the ideal presentation of the spatial 
information contained within a two-channel stereo audio re-
cording will depend to a certain extent on their own preferences, 
listening environment and reproduction equipment. As trends in 
spatial presentation have varied over time, and continue to vary, 
so there may be a desire to revise the spatial presentation in exist-
ing two-channel recordings. Examples such as these require the 
‘un-locking’ of the spatial information for each source (real and 
virtual) direction. This represents a considerable challenge where 
there are more source directions than channels.  
 The purpose of the target system, for which the analy-
sis and resynthesis methods are compared here, is to divide the 
auditory scene presented by time-coincident (level-panned) audio 
into directional ‘segments’ [1]. Having more segments than au-
dio channels offers flexibility in how each segment is presented 
at two (or more, if up-mixing is the application) loudspeakers. 
This is the over-arching aim of this research. As such, this work 
exists between individual source separation, such as that de-

scribed in [2], and spatial processing (for example [3-5]). The 
purpose is not necessarily to provide every single instrument 
separately for re-mixing, but to provide (distinct or overlapping) 
zones within a two-channel audio scene. 
 Previously an adaptive analysis/resynthesis method, 
based on dual-tree complex wavelets, was investigated and com-
pared for use in this system with other methods traditionally used 
for this type of application [1]. Whilst the complex wavelet pack-
ets demonstrated an ability to adapt to the input, the figures of 
merit (FoM) used in that study demonstrated that they were al-
ways out-performed by another method (albeit not always the 
same one). However their adaptivity did avoid the transient 
smearing that was exhibited with short-time Fourier transform 
(STFT) methods with relatively long window lengths. A version 
of best basis search of complex wavelet packets, which used the 
available phase information was also investigated but did not 
consistently offer an improvement in the FoM and, in one case, 
caused a significant degradation in performance. 
 The work in this paper expands the range of analy-
sis/synthesis methods used, introduces a regularised version of 
the phase-weighted best basis search and includes an additional 
FoM. Since subjective evaluation is also a crucial part of assess-
ing these methods all audio examples used to generate the FoMs 
are discussed and made available online, as was done for the pre-
vious work.  
 In the next section of this paper an overview of direc-
tional segmentation of stereo audio is given and the segmentation 
system that all of the methods are tested with is described. Sec-
tion 3 summarises the different analysis/resynthesis methods used 
and discusses the necessary theoretical detail. In section 4 the 
experimental design is explained and section 5 presents results 
for three different two-channel amplitude-panned mixtures. The 
final section summarises the paper and presents conclusions 
based on the results. 

2. DIRECTIONAL SEGMENTATION OF TWO-
CHANNEL AUDIO 

2.1. Application examples 

Space is represented in stereo recordings by differences between 
the signals reproduced at each loudspeaker (or earpiece if head-
phones are used, although only loudspeaker reproduction is con-
sidered in this paper). If there are no differences between the sig-
nals then the presentation is monophonic. The inter-channel dif-
ferences may be amplitude (e.g. coincident microphones, typical 
panning controls), time (e.g. spaced microphones, time-delay 
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panning) and/or spectral (e.g. binaural with crosstalk cancellation 
for loudspeaker reproduction). A detailed discussion of the dif-
ferences between amplitude- and time-difference presentation of 
audio via loudspeakers has been given previously [1, 6]. The 
work in those papers, and that presented here, is motivated by the 
desirability of reconfiguring spatial audio so that the spatial in-
formation can be presented in a different way. This work focuses 
on processing of amplitude panned (or captured) spatial audio.  
 
If directional segments can be extracted from a two-channel mix-
ture then they could be re-panned using time differences instead, 
therefore changing the presentation of spatial information. To 
introduce such position dependent delays for each source direc-
tion post-recording/mixing, where there are more source direc-
tions than channels, requires a separation system. The work de-
scribed in this paper tests the effectiveness of different time-
frequency analysis and synthesis methods when used in such a 
system. 
 
Another means of changing the presentation is to change the 
number, or configuration, of loudspeakers. More than two-
channels, delivered via the same number of loudspeakers (or 
more) can improve localisation, create a greater sense of envel-
opment and increase the size of the listening ‘sweet spot’. For 
soundfield reconstruction systems (such as high-order ambison-
ics) increasing the number of loudspeakers reduces spatial alias-
ing. For panning systems (e.g. so called ‘pair-wise’ positioning 
of sources) a greater number of discrete channels concentrates 
sound energy for a single source into a smaller number of speak-
ers (or a smaller area of the array). This improves localisation 
over a wider listening area. For example, where there are more 
loudspeakers but just two discrete audio channels available (such 
as for the playback of legacy two-channel stereo over 5.1 sur-
round systems) then the listening sweet spot may be enhanced 
(for example by extracting centre source directions and reproduc-
ing the audio via all of the front three speakers) or the spatial 
presentation may be enhanced by the positioning of source direc-
tions into rear speakers (e.g. for improved rendering of reverbera-
tion). This process is known as ‘up-mixing’ (e.g. [5]). Again, this 
process requires some form of separation algorithm in cases 
where there are more than two source directions. 

2.2. Directional segmentation via time-frequency analysis and 
resynthesis 

Time-frequency analysis, and resynthesis, is concerned with the 
decomposition, and construction, of signals as combinations of 
individual components that have certain positions and distribu-
tions in time and frequency [7]. The time-frequency plane for a 
signal is the distribution of these components across these two 
dimensions. An overview of the use of time-frequency analysis 
and resynthesis for directional segmentation of audio, along with 
a discussion of important prior work, is given in [1] and the 
reader is directed there for further information.  
 
The context for the comparison of time-frequency analysis and 
resynthesis methods which is reported in this paper is a system 
that is described in detail in [1] and, again, the reader can find 
more information there. In that paper the possibility of using a 
phase-weighted entropy measure, in cases where the analysis-
resynthesis method was both adaptive and complex, was exam-
ined. This phase-weighted entropy measure was given by: 

( )( ) ( )( )
( ) ( )

L R 2 L R

R L1

( ) log ( )P

p

a p a p a p a p
H

p pφ φ=

+ +
= −

−
∑           (1) 

where a and φ are the energy and phase of an individual atom of 
the decomposition,  (L and R designate which spatial channel the 
atom belongs to) and H is the entropy for a particular basis of P 
atoms. It was found that this measure did not consistently im-
prove performance. For this paper a regularised version of (1) is 
employed to investigate whether this improves consistency 
and/or performance, where r is the regularisation constant:  
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For real packet decompositions this version of the cost function 
cannot be used since no phase information is available. No best 
basis search is performed where the analysis-synthesis basis is 
fixed (i.e. the method is non-adaptive). 
 
As described in [1] overlapping directional windows are used 
rather than the binary functions that have been commonly used in 
other studies (e.g. [2]). These directional windowing functions 
are shown in Figure 1 four equally spaced segments (which is the 
scenario tested in this paper). In most situations it will be desir-
able for a segment to be centred on a single source, and encom-
pass that source only.  In the case where sources are not regularly 
spaced, a modified windowing function would be required to en-
sure that segments are source-centred and preserve energy when 
combined. This could be achieved by using Hann-like tapering at 
the ends of constant functions as described in [26]. 
 
The windowing functions shown in Figure 1 only fully cover the 
front and rear quadrants (not the sides) of the recorded space. In 
anechoic situations where sources are only placed within the 
front quadrant (as is tested here) then the presence of energy out-
side of these regions (the residual after separation) indicates that 
separation has not been completely successful - the lower the en-
ergy level in the residual, the more successful the capture of 
sources within directional segments has been. Therefore the rela-
tive amount of energy in this residual is used as an FoM in the 
results presented in this paper. In echoic situations then this re-
sidual may also (correctly) contain reverberation/reflections from 
the side.  

 

Figure 1: Directional segmentation windows applied to 
an audio scene containing four equidistantly and sym-
metrically spaced sources. 
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3. TIME-FREQUENCY ANALYSIS/SYNTHESIS 
METHODS 

This section surveys the different analysis/resynthesis methods 
which are tested within the system discussed in sub-section 2.2. 
They can be grouped in two different ways: real and non-
redundant versus complex and redundant, or adaptive versus 
non-adaptive. Since extensive coverage of many of the methods 
has been provided previously, what is presented here is a short 
summary of the information in [1], with additional detail on 
methods which have been used here for the first time. 

3.1. Discrete wavelet transform (DWT) 

This transform, which is exhaustively covered in the existing lit-
erature (e.g. [8]) is characterised by successive high and low pass 
filtering operations followed by decimation by a factor of two 
which yields a dyadic division of the time-frequency plane (fixed 
basis). The DWT is non-redundant, shift-variant and is some-
times referred to as the ‘fast’ or ‘decimated’ wavelet transform, 
to differentiate it from undecimated wavelet transforms (which 
are redundant). The nature of the wavelet (e.g. its distribution in 
time-frequency) is determined by the coefficients used in the fil-
ters. Four different sets of filter coefficients are used here. The 
first set are those of Daubechies with six vanishing moments 
(‘db6’, 12 tap filters), the second are Daubechies with fourteen 
vanishing moments (‘db14’, 28 tap) and the third are those of 
Vaidyanathan, designed for narrow transition from pass- to stop-
band (‘vaid’, 24 tap) [8]. These filter sets are available either in 
the Mathworks Wavelet Toolbox, the Wavelab Toolbox or the 
Dual-Tree Wavelet Packet Toolbox [9-11]. The fourth set has 
been generated using the Filter Design Toolbox in Matlab 
(firpr2chfb function). These are 48 tap power-symmetric 
filters. The magnitude response of the low-pass filter is shown in 
Figure 2 (since the filters are power-symmetric the high-pass re-
sponse is the exact reverse of that shown in the figure). In the 
experiments conducted for this paper, the DWT is carried out 
over eleven stages, yielding an eleven-scale decomposition.  All 
four filter sets are orthogonal (i.e. the synthesis filters are the 
time reverse of the analysis filters). 

 

Figure 2: Magnitude frequency response of the 48 tap fil-
ter low-pass filter. 

3.2. Wavelet packet decomposition (WPD) 

The wavelet packet decomposition (WPD) is a generalisation of 
the DWT. Dyadic is just one of many different divisions of the 
time-frequency plane which are achieved when both low and 
high pass filtering operations are carried out on each set of coef-
ficients at each decomposition level. A number of different de-
compositions can be achieved by different combinations of high- 

and low-pass filtering operations and from these a single decom-
position, offering a particular division of the time-frequency 
plane, can be chosen. Because of the binary tree structure of the 
decomposition, fast algorithms exist for searching for the best 
representation (the ‘best basis’) for a particular signal [12, 13].   
 
The same four sets of filters that are used to implement the DWT 
are used for the WPD. Although the WPD can be considered to 
include the DWT, results for the DWT are presented separately 
in the next section since deriving a DWT only is a much cheaper 
operation computationally (but the basis is fixed). As for the 
DWT, the WPD is carried out over eleven scales, dividing the 
frequency axis into 2048 components for a full packet decompo-
sition at this scale. 

3.3. Cosine Packet Decomposition 

Local cosine bases given by the Cosine Packet Decomposition 
(CPD) are also amenable to fast searching for a best basis [8]. 
The reader is directed to [1] for details of the implementation 
used in these experiments. The CPD divides the time-frequency 
plane into time partitions (whose frequency resolution are deter-
mined by choice of partition length), as opposed to the WPD, 
which divides the time-frequency plane into frequency partitions 
(whose length are determined by the choice of bandwidth) [8]. In 
both cases, many different combinations of different length (or 
bandwidth) segments can be chosen to form a number of or-
thogonal transforms (bases) from which a best basis can be cho-
sen. As for the WPD with best basis, the CPD with best basis 
gives real coefficients of a non-redundant transform. The CPD is 
implemented here with the Wavelab toolbox [10]. A ‘sine’ taper 
is used and D is chosen so that the shortest packet is 512 samples 
long, given N. Where necessary the input signal is appended with 
zeros so that its length N is a power of two. 

3.4. Short-time Fourier transform (STFT) 

The STFT is perhaps the most widely known and well under-
stood time-frequency analysis-resynthesis method for audio sig-
nals. A detailed discussion and description can be found in many 
sources (e.g. [14]). This method decomposes signals into equal 
length frames, which can be overlapping and tapered. A discrete 
Fourier transform (DFT) is applied to each frame and this gives a 
set of complex coefficients for sinusoids which are harmonics of 
the frame period, at the centre of each frame. The amount of 
overlap, and hence redundancy, can be arbitrarily set but is con-
strained by the shape of the tapering window applied to the frame 
(e.g. a minimum 50% overlap is required for the Hann window) 
and the distance from the centre of one frame to the next cannot 
be more than the frame length itself. Although the STFT can be 
non-redundant, tapering is usually applied to prevent energy 
spreading due to discontinuities at frame boundaries, and this 
renders the STFT redundant. For example, an overlap of 50% 
yields an STFT with 100% redundancy (providing zero-padding 
is not used). For the work described in this paper two sets of five 
STFT types are employed: one set applies a Hann window with 
50% overlap prior to the DFT but no windowing of the output of 
the inverse DFT (IDFT), the second set has a 75% overlap and a 
Hann window is applied prior to DFT and after IDFT (where a 
Hann window is applied twice, the minimum overlap is 75%). 
Within each STFT set five frame lengths are used: 512, 1024, 
2048, 4096 and 8192 samples. The frames are not zero-padded 
prior to analysis. 
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3.5. Dual-Tree Complex Wavelet Transform (DT-CWT) 

The Dual-Tree Complex Wavelet Transform (DT-CWT) of 
Kingsbury is an extension of the DWT whereby a signal is de-
composed by two sets of basis functions for which each corre-
sponding pair of functions are approximately Hilbert transforms 
of each other [15]. As a result of this approach the DT-CWT is 
100% redundant and approximately shift invariant. The Q-shift 
method of achieving approximate analyticity is used to determine 
the filter coefficients for level two of the decomposition onwards 
[16]. A different set of filter coefficients is used for the first stage 
of the transform: this filter set is used for both ‘trees’ with a one 
sample relative delay. At subsequent stages the Q-shift (quarter 
sample delay) filter set is used in both trees. In the second tree 
these filter coefficients are used in reverse order, giving a three-
quarter delay and, therefore, the half sample relative delay be-
tween trees needed for analyticity. The longer the Q-shift filters 
are, the closer the two sets of basis functions are to being Hilbert 
transform pairs. Four sets of filter coefficients are used here to 
implement the DT-CWT: ‘db5’ (first stage) followed by the 14-
tap Q-shift filter coefficients given in Table 2 of [15], ‘db14’ fol-
lowed by the same 14-tap Q-shift filter coefficients, 24 tap Vaid-
yanthan followed by 24 tap Q-shift filters and, finally, the 48 tap 
filters  described at the end of Section 3.1 followed by 48 tap Q-
shift filters. The last two sets of Q-shift filters were designed us-
ing the Q-shift filter design toolbox [17]. For comparison the 
magnitude response of the 14, 24 and 48 tap Q-shift filters are 
shown in Figure 3. As for the real DWT, the number of scales in 
the following experiments is eleven. 

 
Figure 3: Magnitude frequency responses of each low-pass Q-
shift filter. 

3.6. Dual-Tree Complex Wavelet Packet (DT-CWPD) 

The Dual-Tree Complex Wavelet Packet Decomposition (DT-
CWPD) is the complex equivalent of the WPD, in the same way 
that the DT-CWT is the complex equivalent of the DWT. It 
yields bases with 100% redundancy. Since the DT-CWT consists 
of two orthogonal decompositions of the same signal, a straight-
forward approach to deriving a wavelet packet decomposition is 
to treat the two ‘trees’ as completely independent with their own 
sets of filters, where, after the first decomposition stage, the set 
used in one tree is the time-reverse of the set used in the second 
tree (as is the case for the DT-CWT). However ‘analyticity’ is 
better preserved by an altered scheme where some of the filtering 
stages of both trees use the same filters [18]. This scheme is em-
ployed here for the DT-WPD and it is implemented using (with 
some modifications) the toolbox provided at [19]. The same filter 
sets are used as for the DT-CWT (except that the first stage filter 
is ‘db5’ rather than ‘db6’, although it is replaced with ‘db6’ 
when non Q-shift filters are used in subsequent stages, see [19]). 
In fact, the first two filter sets are the same as those provided as 
examples at [19]. The maximum decomposition level is, again, 
eleven. 

4. COMPARISON OF ANALYSIS/RESYNTHESIS 
METHODS 

In order to compare the methods described in Section 3, they are 
tested using the system discussed at the end of Section 2. They 
are tested with three different anechoic audio mixtures, ranging 
from two to seven seconds in length, each containing four 
equally spaced point sources. The use of mixtures of anechoic 
sources allows the Signal to Residual Ratio (SRR, the ratio of 
energy in the residual segment to the energy contained in all of 
the other segments) to be used as an FoM. As for the experiments 
described in [1], for the purposes of this test the source positions 
for each mixture are the same and are known a priori. Whilst a 
priori  knowledge of source positions is unlikely to be available 
in real-world applications it is the ability of the decomposition 
methods for segmentation which is specifically being tested here. 
In practice, a posteriori knowledge of source positions could be 
gained from global statistics for the mixture, such as the 
‘panogram’ described in [5]. Each mixture contains four sources 
(src1-4 and each of these are panned to the left and right outputs 
(outL, outR) of the mixture via: 

 

1

2L

3R

4

src

srcout .8341, .5995, .4005, .1659

srcout .1659, .4005, .5995, .8341]

src

=

 
 

    
      

 
 

         (3) 

This mixing matrix gives the same ratio between left and right 
energy that would occur for four sources spaced equidistantly in 
an arc within the front quadrant of a coincident pair of dipole 
microphones at 90 degrees to each other: sources positioned at –
33.75 degrees (-3π/16 radians), -11.25 (-π/16), 11.25 (π/16) and 
33.75 (3π/16) from the centre of the front quadrant. The centres 
of the windows shown in Figure 1 are at these positions and each 
position is covered by that one window only (at the centre of one 
window, the other three windows are at zero). 

4.1. Mixture 1: pitched instruments 

The individual sources for this mixture are clarinet, violin, so-
prano singer and viola performing an excerpt from a Mozart op-
era. The sources are obtained from [20]. 

4.2. Mixture 2: speech babble 

This is a combination of four speakers talking simultaneously. 
The mixture comprises two male adults, one female adult and 
one male child. The sources are obtained from [21]. 

4.3. Mixture 3: percussion with single pitched instrument 

This mixture consists of three hand percussion instruments and a 
single note with swept pitch from a Shakuhachi-like instrument. 
The sources are obtained from [22]. 

4.4. Figures of merit (FoM) 

The quality of the segmentations is objectively measured by four 
quantities for each separated source: the energy weighted inter-
channel correlation, the signal to residual energy ratio (SRR), the 
azimuth error and the signal to distortion ratio (SDR). The SDR 
is described in [23] and can be evaluated using the BSS_Eval 
Toolbox [24]. It compares the separated sources with the original 
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un-mixed sources and attempts to measure the ratio of the actual 
source energy to the energy due to artefacts of the separation al-
gorithm and interference from other sources. It requires prior 
knowledge of the individual sources, which is available here. The 
SDR is designed for monophonic separated sources so it is ap-
plied here to the sum of each channel of the stereo separated out-
puts. 
 
The other FoMs were introduced and used in [1] and so are only 
briefly summarised here. The zero-lag inter-channel cross-
correlation between two channels for a single point source will 
be 1.0 since there are identical signals at each channel (albeit 
with different gains, if not positioned centrally) and there is no 
relative delay between then. Therefore, the closer this FoM is to 
1.0, the better this segment has captured audio from one source 
only. The zero-lag cross correlation is given by: 

X
⋅

= L R

L R

src' src'

src' src'
                           (4) 

where src' L and src'R are vectors containing the samples of the 
left and right channels of the segmented source. An overall FoM 
for all of the separated sources is given by the energy weighted 
mean of X of the sources. Whilst the SDR and the cross-
correlation give an indication of the quality of the segmentation, 
the SDR does not take account of gain errors and the cross-
correlation does not take account of gain or frequency response 
errors (it just measures the localisation of energy for a source – 
not how it is distributed in frequency). For anechoic sources the 
relative level of energy in the residual segment is an indicator of 
how successful the segmentation is in capturing the elements of 
the signal. The Signal to Residual ratio (SRR, measured in dB) is 
the ratio of the residual energy to the energy in the input mixture. 
The azimuths of individual separated sources can be calculated 
using 

( )' sgn arccotθ = −
−

+ 
 
 

R L
R L

R L

src' src'
src' src'

src' src'
   (5) 

and from this the azimuth error can be found, since actual the 
source directions are known. The energy-weighted mean azimuth 
error for all sources is an indicator of the extent to which seg-
ments are contaminated by each other, since azimuths will be 
biased by the presence of energy from other sources. 

5. RESULTS 

Three sets of plots are presented, one for each mixture. Within 
each set there are four plots which compare the performance of 
the different analysis and resynthesis methods for each FoM. The 
following abbreviations are used: 
 
DT-CWPD 1, DT-CWT 1: 14 tap Q-shift filters, non Q-shift fil-
ters are ‘db5’ at the first stage, ‘db6’ thereafter. 
DT-CWPD 2, DT-CWT 2: 14 tap Q-shift filters, non Q-shift fil-
ters are ‘db14’ at all stages. 
DT-CWPD 3, DT-CWT 3: 24 tap Q-shift filters, non Q-shift fil-
ters are 24 tap Vaidyanathan filters. 
DT-CWPD 4, DT-CWT 4: 48 tap Q-shift filters, non Q-shift fil-
ters are 48 tap power-symmetric filters. 
WPD 1, DWT 1: ‘db6’ filters. 
WPD 2, DWT 2: ‘db14’ filters. 
WPD 3, DWT 3: Vaidyanathan 24 tap filters. 

WPD 4, DWT 4: 48 tap Q-shift filters, non Q-shift filters are 48 
tap power-symmetric filters. 
2x: STFT with 50% overlapping windows 
4x: STFT with 75% overlapping windows 
 
‘Phase’ indicates that the best basis has been determined using 
equation (2), rather than (1). The value of r, heuristically deter-
mined, is set at 0.01 for all mixtures. For each set of figures, the 
x-axis labels, which indicate the type of analysis/synthesis 
method under test, are provided in the first of the four plots.  

5.1. Figures of merit 
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Figure 4: FoM for the instrument mixture: SDR (dB, top of pre-
vious page), correlation (middle of previous page), SRR (dB, 

bottom of previous page), azimuth error (radians, above) 
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Figure 5: FoM for the speech mixture: SDR (dB), correlation, 

SRR (dB), azimuth error (radians) 
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Figure 6: FoM for the percussion mixture: SDR (top), correla-

tion, SRR, azimuth error (bottom) 

5.2. Online audio examples 

Audio files of the original sources, mixtures and separated 
sources for each method are provided in an online archive so that 
they can be auditioned [25]. 

5.3. Discussion 

Some clear trends can be seen in Figures 4-6. Redundancy, 
whether achieved through introducing a second orthonormal 
transform whose basis functions are an approximate Hilbert 
transform pair with the first, or by increasing the overlap of basis 
functions improves the SDR performance of these methods for 
directional segmentation: STFTs using 75% overlapping win-
dows achieve better results than those using 50% overlap and the 

complex DWT or WPD always outperforms its real counterpart. 
Whilst ‘real’ methods do relatively well in terms of cross-channel 
correlation and azimuth error, they perform poorly in terms of 
SRR and their SDR performance is markedly worse than com-
plex versions of the same methods in many cases. This shows 
that real analysis methods produce individual sources which have 
close to the correct azimuth and have narrow width, but this is at 
the cost of additional energy appearing in the residual. 
 
The STFT with 75% overlap achieves the best FoMs for all mix-
tures. The 4096 frame-length STFT is best for the pitched in-
strument and speech mixtures, the 2048 frame-length version 
doing slightly better for the percussion mixture. The DT-CWPD 
using the fourth filter set performs best in terms of SDR out of 
the wavelet methods for all except the speech mixture. However 
it is out-performed by the CPD for all but the percussion mixture. 
As was found in [1], the use of phase-weighting in the entropy 
measurement for the best basis search does not have a dramatic 
positive impact on the FoMs. However the incorporation of a 
regularisation constant (not employed in [1]) does improve the 
consistency of phase-weighting overall (preventing serious 
anomalous degradations as occurred in [1]). Overall it is also 
more effective than the non-phase weighted measure, but the dif-
ference in performance is insufficient to be conclusive. 
 
Listening to the audio outputs for the percussion mixture the 
drawback of long frame-length STFT analysis and resynthesis is 
clearly audible: transient smearing is much worse (although the 
separation is audibly better) than it is, for example, for the DT-
CWPD with the filter set 3. The CPD performs well in the first 
half of the separation but then time definition is lost completely. 
Although transient smearing is both time-varying gain and spec-
tral change, both of which the SDR should penalise, it does not 
have much impact on this FoM. It is worth noting here that in [2] 
the maximum STFT size was limited to 1024 because of the 
damage that longer frame sizes did to note onsets. 
 
The longer-frame STFT methods audibly perform very well on 
speech and the pitched instrument mixture, although occasionally 
consonants and note onsets are degraded. Applying a window to 
the output of the IDFT, as well as the input to the DFT, is helpful 
in removing annoying ticks that are due to end-of-frame discon-
tinuities introduced by the segmentation process. 

6. CONCLUSIONS AND FUTURE WORK 

This paper, along with its accompanying online resource of audio 
examples, has presented a comparison of a number of different 
time-frequency analysis/resynthesis methods for use in direc-
tional segmentation. The FoMs used clearly indicate that long-
frame STFT methods with relatively high redundancy work best, 
although audition of the segmentations, particularly for percus-
sion, provide a caution about using such objective measures as a 
sole indicator of quality. Whilst the dual-tree versions of the 
wavelet methods perform better than their real counterparts, and 
complex packets with long filters (including Q-shift) generally 
perform best, they do not begin to compete (numerically at least)  
with the STFT (or the CPD, considering just the speech mixture).  
 It is highly desirable to have an adaptive method that 
can perform as well as the STFT and there are many parameters 
and possibilities of the DT-CWPD that have yet to be fully inves-
tigated. Filters of 48 taps may still be too short for general audio 
applications and the benefit of phase-weighting may become 



Proc. of the 14th Int. Conference on Digital Audio Effects (DAFx-11), Paris, France, September 19-23, 2011 

 DAFX-8 

more apparent with longer Q-shift filters. The development of an 
adaptive method which can match the STFT’s performance 
within the system, and on the example mixtures, tested here, re-
mains a challenge. However the challenge is a worthwhile one, 
given the potential benefits of high-quality directional segmenta-
tion. Of course, some consideration should also be given to com-
putational cost, and more redundant methods are usually more 
expensive. But, for this application, redundant time-frequency 
representations seem to perform best overall. 
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